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Alt&ac&--A very effective solution method is proposed to solve the conjugate problems of forced con- 
vection in laminar boundary layer flow and heat conduction in a solid wall. For flows passing a flat plate 
and a wedge, very accurate finite-difference solutions of interface temperature and heat transfer rates are 
presented over the entire thermo-fluid-dynamic field for any Prandtl number between 0.0001 and infinity. 
Comprehensive correlation equations of the local Nusselt numbers are also presented, which coincide 
excellently with the numerical data. For the conjugate problems of the stagnation flow and a rotating cone 

or disk, exact solutions are obtained. 

1. INTRODUCTION 

IN THE ordinary (traditional) convective heat transfer 
between a solid wall and a fluid flow, the temperature 
or the heat flux at the solid-fluid interface is prescribed 
usually as a constant over the entire interface. Phys- 
ically, the condition of constant wall temperature is 
obtainable by mixing violently or having phase change 
(e.g. boiling or condensation) on the other side of a 
thin wall with higher thermal conductivity. In many 
engineering systems, however, the wall conduction 
resistance is not negligible. In this case, the conduction 
in the solid wall and convection in the fluid should be 
solved simultaneously. This type of conjugate heat 
transfer problem was introduced originally by Luikov 
[l]. Luikov and his co-workers solved the conjugate 
forced convective problem along a flat plate both 
numerically [2] and analytically [3-51. 

In this work, we solve the same problem, but extend 
it to the whole ranges of the conjugation parameter 
and Prandtl number, by using a quite different solu- 
tion method. Moreover, the conjugate problems of 
wedges, stagnation flow, and rotating cone or disk are 
also solved by the proposed method. To the knowl- 
edge of the authors, these conjugate problems have 
not been reported. 

In the analysis of the conjugate problem, the energy 
conservation equations of conduction and convection 
are coupled by the condition of heat flux continuity 
at the solid-fluid interface [5] 

where the subscripts s and f of the thermal con- 
ductivity k and temperature Tare referred to the solid 

t Author to whom correspondence should be addressed. 

wall and fluid flow, respectively. In general, the axial 
conduction along the wall is negligible when com- 
pared with the normal conduction across the wall [4, 
51. In this case, the temperature profile in the wall is 
linear and equation (1) can be written as 

or as 

k,(T,-TOM = -kf (2) 

T,-T, = -($)(~)~=0 (3) 

where T0 is the temperature at the interface of a flow- 
ing fluid and a solid wall of thickness b ; and Tb the 
temperature at the other surface of the wall. While T, 

is a specified constant, T, varies along the interface 
and depends on the flow dynamics and solid con- 
duction in the wall. 

A scale analysis on equation (3) gives 

Tb- T0 kfb pNp= 
To-T, k&x) - ’ 

where 6(x) is the thickness of the thermal boundary 
layer. This equation defines a conjugation parameter 
< as the ratio of the thermal resistance of the solid 
wall to that of thermal boundary layer in fluid. The 
thickness of the thermal boundary layer depends on 
the physical properties and flow dynamics of the 
system. For wedges (including flat plate and two- 
dimensional stagnation point) in fluids of any Prandtl 
number, a scale analysis [6] revealed that 

where 

6(x) N X/NM _ x/[a(Pr) Re”‘] (5) 

o(B) = Pr”2/(1+Pr)“6 (6) 

and Re = u,xIv is the local Reynolds number. Conse- 
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NOMENCLATURE 

thickness of wall 
local Brun number 
local friction coefficient 
reduced stream function 
local heat transfer coefficient 
dimensionless velocity normal to the 
surface of a cone 

SC exp (. - f”o f’(d &I dq 
thermal conductivity 
local Nusselt number 
Prandtl number 
heat flux 

k,(T*- TX_)lb 
MT,-- r,t 
local Reynolds number : u,xIo for wedges ; 
and (w?/u) sin 4 for a rotating cone 
temperature 
temperature at the inner surface of the wall 
dimensionless temperature, 

(T- ?;)/(Th- T-1 
velocity component in the x-direction 
velocity component in the y-direction 
coordinate parallel to the wall 
coordinate normal to the wall. 

Greek symbols 
thermal diffusivity of fluid 
angle factor of the wedge 
thermal boundary-layer thickness 
conjugation parameter, (kfb/ks.x)i 
dimensionless coordinate, (y/x)i, 
dimensionless temperature, 

(T-T,)/(T,-T,)+(T-T~)a/ 
(q,xlkrI 
(T Rl? “l 

kinematic viscosity 
dimensionless x-coordinate, (1 + 5) - ’ 
fluid density 
Pr”‘/(l +Prf’!6for wedges; f’r/(l+P~)~~~ 
for rotating cone 
half angle of a cone 
stream function 
angular velocity. 

Subscripts 
f fluid 
h case of constant wall heat fiux 
S solid wall 
t case of constant wall temperature 
0 at the solid-fluid interface 
CC beyond the boundary layer. 

quently, the conjugation parameter for a flat plate and 
wedges in fluids of any Prandtl number is 

which is similar to the local Brun number 

Br, = g Pr” Re” 
s 

(7) 

in ref. [S]. For the conjugate problem of a flat plate 
in an air flow, Br, = (k~b]k~~)Pr ‘I3 Re In [S]. 

For the extreme case of c --, 0 (the wall resistance 
b/k, is much less than the fluid resistance S/k,), it 
follows from equation (4) that 

T0 cz T,, = constant. (9) 

This case is equivalent to the ordinary convective 
problem with the boundary condition of constant wall 
temperature. On the other hand, for the limiting case 
of < + co (the wall resistance is much greater than the 
fluid resistance), we have 

U-,---T,) << Vh--7;)). (10) 

This equation indicates that for the case of < -+ co 
the temperature drop across the boundary layer is 
negligible when compared with that across the wall. 
Therefore 

(Th-7-J LZ (T,,-Tco). (11) 

In this case, the boundary condition (2) is reduced to 
the ordinary boundary condition of constant wall heat 
flux 

= k,(T,- Tm)/b = constant. (12) 

The foregoing analysis reveals that the conjugate 
problem can be regarded as a hybrid system of the 
ordinary convective problem with the boundary con- 
dition of constant wall temperature and that of con- 
stant heat flux. Based on the physical nature of the 
conjugate problem, we propose appropriate dimen- 
sionless coordinates and temperature to give a non- 
similarity transformation of the energy equation over 
the entire thermo-fluid-dynamic field for fluids of any 
Prandtl number. For the extreme cases of c -+ 0 and 
< -+ co, the resulting non-similar equations can readily 
be reduced to the sets of similar equations of the 
ordinary convective problems with constant wall heat 
flux and constant wall temperature as boundary con- 
ditions. 

For the two-dimensional stagnation flow (wedge 
angle = n), the non-similar energy equation is reduced 
to a similar equation which permits exact solution. 
The same form of the exact solution can be obtained 
for the case of a rotating cone or disk, since the trans- 
formed energy equations and boundary conditions of 
these two systems are very similar. 



Conjugate heat transfer of induction and foreed convection along wedges and a rotating cone 2499 

For flat plate and wedges, the non-similar equations 
are solved by an implicit finite-difference scheme to 
give very accurate results for 0 < 5 G 03 and 
0.0001 Q Pr G 00. The accuracy of the numerical 
results is verified by comparing with the exact solution 
of the stagnation flow and with the previous reports 
for a flat plate [4, 51. 

2. MATHEMATICAL FORMULATION 

A schematic description of the conjugate heat trans- 
fer problems considered in this paper is shown in Figs. 
l(a)-(d), respectively, for the cases of a wedge, a flat 
plate, the stagnation flow, and a rotating cone. Heat 
is transferred from the inner surface, which is kept at 
a constant temperature T,, across the wall by con- 
duction to the incompressible laminar flow of tem- 
perature T, and constant properties. For 
convenience, the fluid temperature T, is written as T 
thereafter. When the heat dissipation and body force 
are neglected, the boundary-layer energy equation for 
laminar flow over a wedge of angle a/I is well known 
as 

ar ar a2T 
U-pVay=uay. (13) 

The energy equation is subjected to the boundary 
conditions of equation (2) at the solid-fluid interface 
and 

T= T, as y-+co. (14) 

For the analysis of the coupling of conduction with 
forced convection, we introduce the following dimen- 
sionless coordinates : 

?&Y) = Y/Q@) = (Y/XV (15) 

and 

= (I+[)-’ (16) 

where 

A = e Re’12. (17) 

In addition, we propose a novel dimensionless tem- 
perature 

- 

- 

- 

- 

- 
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(d) and a reduced stream function 

f(r) = Il/(x,Y)laa (19) FIG. 1. Schematic diagram and coordinate system of the 
conjugate problems : (a) wedge; (b) flat plate ; (c) stagnation ._. . where the constant heat flux q,, = k&T,- T,)/b. The point ; (d] rotating cone. 
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energy equation (13) along with the boundary con- 
ditions (2) and (14) are then transformed into 

1 
W’f 2--p.fB 

, 1-B .I 
- 2_8(1 -5)J 0 

= SC(l -<)f$ (20) 

wt, 0) - Cl- W’(L 0) = 1 (21) 

H(5, co) = 0. (22) 

The physical quantity of most interest is the local 
interface temperature f3(5,0) from which we can deter- 
mine the temperature gradient at the interface, 
0’(&0), by equation (21) and the local Nusselt 
number, NM = hx/kr, by 

Null = - @(5,0)/6(5,0) (23) 

or by 

1 -tee, 0) 
NuP = (I- <)e(t, 0). (24) 

The local heat transfer rate can then be calculated by 

4 = k,(Ti, - T,)lb 

or by 

= (k,lb)(T, - Tco)[l - 56(5,0)] 

4 = MT,- L) 

(25) 

= NU;(T,-T,).58(5,0). (26) 

The dimensionless streamwise coordinate t(x) is 
also an alternative form of the conjugation parameter 
[ or the local Brun number in ref. [.5]. For the limiting 
case of 5 = 0 ([ + co), equations (20), (21) and (23) 
are reduced, respectively, to 

@(O, 0) = - 1 (28) 

and 

Nu,,/L = l/e(o, 0). (29) 

While for the other limiting case of 5 = 1 ([ = 0), the 
reduced equations are 

and 

e(i,o) = I (31) 

NuJl = -e’(l, 0). (32) 

The former and the latter sets of similar equations are 
identical to those of the ordinary convective problems 
[6] with the boundary conditions of constant wall heat 
flux and constant wall temperature, respectively. 

3. NUMERICAL SOLUTION 

Equations (20)-(22) are solved by a very effective 
finite-difference scheme known as Keller’s box 
method [7]. The numerical integration was carried out 
step-by-step from 5 = 0 to 1 with uniform step size 
At = 0.01. To obtain numerical results of high accu- 
racy, the step size Arl was taken to be 0.05 and the 
integration was ended at rl, = 6. 

In the numerical integration of equation (20), the 
values of f(q) and f’(q) at each rl were obtained 
from the numerical integration of the transformed 
momentum equation [6] 

Pr f”‘+ Zlgff”+ +$[(l+Pr)‘/‘-f’f’] =0 

(33) 

with the boundary conditions 

f (0) = 0, f ‘(0) = 0, 

f “(0) = OS(1 + Pr _ ‘) ‘12Cr Re ‘I2 (34) 

by using a fourth-order Rung+Kutta scheme. The 
values of Cr Re ‘I2 are 0.66412, 1.51490, and 2.465175 
[6] for the cases of a flat plate (/I = 0), a wedge of 
/I = 0.5, and the stagnation flow (/I = I), respectively. 

4. EXACT SOLUTIONS FOR STAGNATION 

FLOW AND ROTATING CONE 

For the stagnation flow (/I = 1), equation (20) is 
reduced to the similar equation 

en+fF=0. (35) 

Via separation of variables, equation (35) can be inte- 
grated to yield 

w&q) = @(LO)exp [ -lf(s)dg]. (36) 

Integrating equation (36) from rl to co and using the 
boundary condition (22) we obtain 

e(5,1)= -0X,O)~?XP[-~f(9)drI]d’l. 

(37) 

At the solid-fluid interface 

e(5,O) = -6Yr,O)rexp [-[f(++b. 

(38) 

The integral of the exponential function in equation 
(38) can be regarded as a known constant for a given 
Prandtl number. Thus equation (38) can be rewritten 
as 

0(&O) = -tY(<, O)I(Pr). 

From equations (23) and (39), we find 

(39) 
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Null = - O’(& O)/O(& 0) = l/Z(Pr). (40) 

This equation reveals that, for a specified Pr, Null is 
a constant for any conjugation parameter 5. Conse- 
quently, the values of Z(Pr) can be obtained from the 
numerical results of e(O, 0) at 5 = 0 and 0’(1, 0) at 
~=l.At~=O,fI’(O,O)=-landthus 

Z(Pr) = 0(0,0). (41) 

On the other hand, at c = 1, f?(l, 0) = 1 and therefore 

Z(Pr) = - l/V(l,O). (42) 

The values of f3(0,0) and 0’(1,0) for Pr = 0.0001 to 
infinity can be found from Tables 1 and 2 of ref. [6]. 
From equations (21) and (39), we obtain the exact 
solutions of the interface temperature 

WL 0) = Z/V - (1 -on (43) 

and the temperature gradient at the interface 

@(&O) = - 1/[1 -(l -Z)(]. (44) 

For the conjugate problem of a rotating cone or 
disk, the transformed energy equation is derived as 

,,,-Z#‘= 0 (45) 

where the dimensionless velocity H = vx/ul. The vari- 
able 1 in the definitions of H, <, 0, 5, and 0 is defined 
as 

1 = aRe”* = [Pr/(l+Pr)2/3][(wx2/u)sin~]‘/2 

(46) 

where o is the angular velocity and 4 the half angle 
of the rotating cone. For the special case of 4 = n/2, 
the rotating cone is reduced to a rotating disk. 

Since the transformed energy equations (35) and 

(45) are very similar and are subjected to the same 
boundary conditions, the exact solutions of e({,q), 
0([, 0), 0’({, 0), and Nu/n derived for the case of the 
stagnation flow can be applied to that of a rotating 
cone, except that f(q) in equations (37) and (38) is 
replaced by -H(q). The values of 0(0,0) and 0’( 1,O) 
for a rotating cone were listed in Table 1 of ref. [8] 
for Pr = 0.001 to infinity. These values can also be 
obtained from a correlation equation in ref. [8] or 
from the more precise correlation 

Nu,,/l = l/0(0,0) = Nu,/n = - f?‘( 1,0) 

I+Pr 1 
*/3 = 0.6109 

0.5301+0.3996Pr ‘I* + Pr ’ (47) 

The maximum error of this correlation is less than 4% 
for any Prandtl number between 0.001 and infinity. 

5. RESULTS AND DISCUSSIONS 

5.1. Temperature profiles 
Typical dimensionless temperature profiles e({, q) 

for the case of a flat plate are presented in Figs. 2 and 
3, respectively, for fluids of very small (Pr = 0.001) 
and moderate (Pr = 0.7) Prandtl numbers. The tem- 
perature profiles for large Prandtl numbers (Pr > 7) 
are very similar to those for Pr = 0.7. The temperature 
profiles of wedges are similar to those of a flat plate, 
and are left out here. The profiles of a different dimen- 
sionless temperature 

T* = 
T- T, 

___ = w, f7) 
T,-Ten 

(48) 

are shown in Fig. 4 for a flat plate (/I = 0) in air 
(Pr = 0.7). As can be seen in this figure, the interface 
temperature increases from T, at 5 = 0 to Tb at 5 = 1. 
Figures 3 and 4 show clearly the evolution of the 
temperature profiles from the profile of the constant 

Pr=O. 001 

~=0,0.1.0.2.--~,1 

Pr=O. 7 

5 =1.0.9,0.8,---,O.l,O 

FIG. 2. Typical dimensionless temperature profiles 0(&q) for FIG. 3. Typical dimensionless temperature profiles tI(c, q) for 
a flat plate, Pr = 0.001. a flat plate, Pr = 0.7. 
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cases of the stagnation flow and a rotating cone, exact 
solution (43) is available, and the numerical data of 
these cases are not presented here to conserve space. 
The accuracy of the numerical results is confirmed by 
comparing with the exact solutions of the stagnation 
flow. It is found that the two solutions are identical 
even to the fifth significant digit. In addition, at 5 = 0 
the present results of 0(0,0) are identical to the pre- 
vious results [6] of the ordinary convective problems 
with constant wall heat flux. Furthermore, at 5 = 1, 
all the numerical results of Q’(l,O) are identical to 
those for the constant wall temperature case [6]. 

The variations of the dimensionless interface tem- 
perature 

To--To, T’, = ~ 
Th--Tm 

= W&O) (49) 

FIG. 4. Typical dimensionless temperature profiles T* for a 
flat plate in an air flow (Pr = 0.7). with l/c are shown in Fig. 5 for the case of a flat plate. 

For the cases of a wedge of /3 = 0.5 and the stagnation 
flow (/I = 1) as well as rotating cone or disk, the plots 

wall heat flux case (5 = 0) to that of the constant wall of the dimensionless interface temperature are similar 
temperature case (5 = 1). to this figure and are omitted here. Figure 5 shows 

that the interface temperature increases as Prandtl 
5.2. Interface temperature number increases from 0.0001 to 10 for large con- 

Numerical results of the interface temperature jugation parameter. However, the interface tem- 
@(l,(l) for the conjugate problems of a flat plate perature is almost independent of Prandtl number for 
(fi = 0) and a wedge of /I = 0.5 are listed respectively Pr > 10. This figure also shows that, for any Prandtl 
in Tables 1 and 2 for Pr = 0.0001 to infinity. For the number, the dimensionless interface temperature 

Table 1. Numerical results of t7((, 0) for the case of a flat plate 

Pr 

i 0.0001 0.001 0.01 0.1 0.7 1 7 10 100 1000 10000 m 

0.0 1.14560 1.18147 1.28721 1.55113 1.88680 1.94106 2.11244 2.12496 2.15331 2.15632 2.15662 2.15665 
0.1 1.15526 1.18711 1.27987 1.50432 1.77632 1.81895 1.95118 1.96071 1.98220 1.98447 1.98470 1.98472 
0.2 1.16161 1.18916 1.26841 1.45443 1.66958 1.70232 1.80222 1.80932 1.82529 1.82698 1.82714 1.82716 
0.3 1.16378 1.18683 1.25234 1.40172 1.56717 1.59167 1.66535 1.67053 1.68214 1.68336 1.68348 1.68350 
0.4 1.16080 1.17928 1.23121 1.34659 1.46959 1.48738 1.54022 1.54389 1.55211 1.55298 1.55306 1.55307 
0.5 1.15168 1.16568 1.20469 1.28954 1.37725 1.38970 1.42630 1.42882 1.43446 1.43505 1.43511 1.43512 
0.6 1.13552 1.14537 1.17266 1.23122 1.29046 1.29875 1.32296 1.36462 1.32832 1.32871 1.32875 1.32876 
0.7 1.11174 1.11801 1.13534 1.17234 1.20938 1.21452 1.22947 1.23050 1.23277 1.23301 1.23303 1.23304 
0.8 1.08042 1.08385 1.09335 1.11368 1.13403 1.13686 1.14504 1.14560 1.14685 1.14698 1.14699 1.14700 
0.9 1.04255 1.04393 1.04776 1.05601 1.06433 1.06548 1.06884 1.06907 1.06958 1.06963 1.06964 1.06965 
1.0 1.00000 1.00000 1.00000 1.00000 1.OOoOO 1.00000 1.00000 1.00000 1.00000 1.00000 1.OOOOO l.OOOOO 

Table 2. Numerical results of 0(& 0) for the case of a wedge with p = 0.5 

Pr 

i 0.0001 0.001 0.01 0.1 0.7 1 7 10 100 1000 10000 a, 

0.0 1.18077 1.20134 1.26264 1.41812 1.61401 1.64378 1.71960 1.72146 1.70999 1.69733 1.69082 1.68514 
0.1 1.18076 1.19886 1.25236 1.38546 1.54798 1.57214 1.63267 1.63404 1.62422 1.61373 1.60835 1.60365 
0.2 1.17741 1.19295 1.23854 1.34984 1.48165 1.50085 1.54813 1.54909 1.54083 1.53231 1.52795 1.52413 
0.3 1.17023 1.18320 1.22094 1.31142 1.41554 1.43041 1.46642 1.46707 1.46029 1.45351 1.45004 1.44702 
0.4 1.15880 1.16923 1.19937 1.27045 1.35015 1.36132 1.38797 1.38839 1.38297 1.37771 1.37503 1.37269 
0.5 1.14277 1.15079 1.17381 1.22733 1.28602 1.29412 1.31315 1.31339 1.30921 1.30527 1.30327 1.30152 
0.6 1.12200 1.12782 1.14441 1.18256 1.22366 1.22926 1.24222 1.24235 1.23928 1.23646 1.23503 1.23378 
0.7 1.09665 1.10053 1.11157 1.13675 1.16353 1.16714 1.17539 1.17545 1.17335 1.17146 1.17050 1.16967 
0.8 1.06723 1.06951 1.07595 1.09059 1.10602 1.10809 1.11275 1.11277 1.11150 1.11038 1.10982 1.10932 
0.9 1.03464 1.03563 1.03843 1.04479 1.05145 1.05233 1.05431 1.05432 1.05374 1.05325 1.05300 1.05278 
1.0 1.OooOO 1.OOoOo 1.OOooO 1.OooOO 1.OoOoO 1.ooOOO l.OoWo 1.ooooO l.ooMO 1.ooooO l.ooOoo 1.OoooO 
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FIG. 5. Variations of the dimensionless interface temperature 
TQ with l/c for a flat plate. 

m 
c 

0.2 01.4 ' 0.s ' 
5 

ale ' 1. 

FIG. 7. Variations of Null, with l for a flat plate. 

increases with decreasing [ or with increasing x, since 
l/t; is proportional to x ‘I2 for a specified solid wall 
and fluid flow. 

The effect of wedge angle on the interface tem- 
perature is shown in Fig. 6 for Pr = 0.7. This figure 
shows that T,, decreases as #l increases at any [ except 
l= 0 and 1. At the leading edge (x = 0, < = 0) 
r0 = T,, while at a downstream distance far from 
the leading edge (x/b + co, c = 1) T,, = T,, for any 
configuration of wedge. 

5.3. Local Nusselt number 
From the numerical results of e(& 0), the local Nus- 

selt number can be calculated by using equation (24). 
The variations of the local Nusselt number with the 
conjugation parameter can be seen from a plot of 
Null vs & or from an equivalent plot of N* = Nu/Nu, 

vs l/c, where Nu, is the local Nusselt number of the 
ordinary convective problem with the boundary con- 
dition of constant interface temperature. The first 
kind of plot is presented in Fig. 7 for a flat plate 
(B = 0). While the second kind of plot is presented in 
Figs. 8 and 9. It is seen from Fig. 7 that Nu/L decreases 
almost linearly with increasing c for any Prandtl num- 
ber. This linear relationship has the benefit of the 
proper definition of {. Figure 8 shows that, for any 
Pr, the local Nusselt number of a flat plate decreases 
from one asymptote to the other as < decreases (5 
increases). This figure also reveals that the local Nus- 
selt number decreases with increasing the downstream 
distance x, since l/c is proportional to x ‘/2. 

Figure 9 shows that N* decreases as [ decreases for 
both the cases of a flat plate and a wedge of /I = 0.5. 

Pr-4.7 

FIG. 6. Effect of wedge angle on the dimensionless interface 
temperature T$, Pr = 0.7. 

I o+ ’ ‘I 0” ’ 5 
m 

115 
o* ’ 4 0’ ’ 

FIG. 8. Variations of N* with l/c for a flat plate. 

d 



2504 W.-S. Yu et al 

1 

A: Eq.(3-27) in 151 

P B: Eq.(3-29) in [51 

FIG. 9. Comparisons of N* 

However, for the cases of the stagnation flow and a 
rotating cone, the local Nusselt number is a constant 
for any < or 5, as can be seen from this figure and has 
been indicated in equation (40). Formulas (3.27) and 
(3.29) of ref. [5] for a flat plate in air and for small 
Brun numbers are also plotted in Fig. 9 for compari- 
son. The comparison reveals good agreement between 
these formulas and the present numerical solution for 
small values of [. The local Brun number in these 
formulas has been converted to [ by multiplying by a 
factor of (1 + Pr- ‘) ‘j6. 

5.4. Correlations of the local Nusselt number 
The linear relationship between Nu/J. and 5 shown 

in Fig. 7 leads to a simple but very accurate corre- 
lation. We propose here a correlation equation of the 
local Nusselt number for the conjugate problem as 

Nu = (1 - GNU,, + 5 Nu, (50) 

where NuI and Nu, are the local Nusselt numbers of 
ordinary convective problems with constant wall heat 
flux and constant wall temperature, respectively. For a 
flat plate, we have introduced, in ref. [9], the following 
correlations of very high accuracy (maximum 
error < 1.4%) for 0.0001 < Pr < 00 : 

l+Pr 1 
116 

Nu,,/l = 0.4689 
0.0247 +O.O987Pr ‘I2 + Pr 

(51) 

l+Pr 1 
116 

Nu,/L = 0.3386 
0.0526+0.1121Pr”2+Pr 

(52) 

For a wedge of B = 0.5, we propose here the following 
correlation equations : 

i 

l+Pr 1 
116 

Nu,,/l = 0.5934 
0.1182+0.6036Pr”*+Pr 

Numerical 

data 

Pr= 

0 0.0001 

A 0.001 

v 0.01 

D 0.1 
* 0.7 

l 7 

. 100 

. 1000 

. 10000 

l m 

FIG. 10. A comparison between the correlated and calculated 
local Nusselt numbers of a flat plate. 

l+Pr 1 
l/6 

Nu,/L = 0.4908 
0.1828+0.7415Pr’12+Pr 

(54) 

for 0.0001 f Pr < co. The maximum discrepancy 
between the predicted values from the correlation 
equations and the numerical results is less than 0.9% 
over the entire region of 0.0001 ,< Pr 6 co. 

Equation (SO) can be rewritten as 

Y= 1+x (55) 
where 

Nu 1 

y=NuIi-_T 

and 

(57) 

Comparisons between the correlations and the 
numerical data are made in Figs. 10 and 11 for a 

Numerical D 0.7 

data l 7 

. 100 

. 1000 

. 10000 

. m 

0 

0 1 2 Ix; b ; 

FIG. I 1. A comparison between the correlated and calculated 
local Nussdt numbers of a wedge with p = 0.5. (53) 
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rs” 

FIG. 12. Variations of the local heat transfer rates with l/i 
for a flat plate. 

flat plate and a wedge of fi = 0.5, respectively. These 
figures have shown excellent agreement between the 
proposed correlations and the numerical results. For 
the case of a Aat plate, the maximum deviation is 
less than 2.8% for 0.001 < Pr < 00, and 4.1% for 
Pr = 0.0001. For a wedge of p = 0.5, the maximum 
discrepancy is less than 1.9% for 0.0001 < Pr < co. 

5.5. Local heat transfer rate 

The local heat transfer rate can be calculated either 
by equation (25) or by equation (26). These two equa- 
tions can be rewritten, respectively, as 

and 

414/J = 1 -ML 0) (58) 

where 

(59) 

qr = MT, - T,) = &(Mx)(G- T,) (60) 

is the local heat transfer rate of the constant wall 
tem~ratu~ case. For the cases of the stagnation flow 
and a rotating cone, the values of $(t, 0) in equation 
(58) and fY({, 0) in equation (59) can be obtained from 
the exact solutions (43) and (44), respectively. While 
for the cases of a flat plate and a wedge of /3 = 0.5, 
values of 0(&O) are obtainable either from Tables 1 
and 2 or from the correlation equations (50)-(54) for 
h$‘L together with equation (24). Once values of 
0({, 0) are at hand, values of 8’ (5, 0) can be calculated 
from equation (21) except for the values of Q’( 1,O) at 
c = 1, which can be obtained from ref. [6]_ 

The variations of the dimensionless local heat trans- 
fer rate q/qh with l/c are shown in Figs. 12-15 for 
wedges of b = 0, 0.5, 1 and a rotating cone, respec- 
tively. These figures show that q/q* decreases with 
increasing l/i or x. The decrease of heat transfer 
rate along the downstream distance is a result of the 
decrease of temperature difference across the wall and 

02 

FOG. 13. Variations of the local heat transfer rates with l/c 
for a wedge of 8 = 0.5. 

the increase of the boundary layer thickness. Further 
inspection of these figures reveals that q approaches 
q,, at large values of 5. In this region, the conjugate 
problem can be approximated by the ordinary con- 
vective problem with a boundary condition of con- 
stant heat flux. On the other hand, there is a region 
of small values of 1; where q/q,, vanishes. In this region, 
the local heat transfer rate should be calculated by 
using equation (59). A very small conjugation par- 
ameter implies that the wall is very thin and its thermal 
conductivity is very large. In this case, the system is 
equivalent to the ordinary convective problem with 
To = T, = constant as the boundary condition. 

Table 3 shows a summary of the regimes of the 
conjugation parameter i, in which a convective system 
should be solved as a conjugate problem. Beyond 
these regimes, a convective system can be approxi- 

Stagnation flow 

FIG. 14. Variations of the local heat transfer rates with l/c 
for the stagnation flow. 
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Rotating cc~ne 

FIG. 15. Variations of the local heat transfer rates with l/c 
for a rotating cone. 

mated, within 5% error of the local heat transfer 
rate, by the ordinary forced convection with boundary 
condition of constant wall heat flux or constant wall 
temperature. 

It follows from equations (48) and (58) that 

q/qh= l-l+++. 
b J3 

Therefore, Figs. 12-15 also show the variations of 
the dimensionless interface temperature ( Tb - T,)/ 
(T,, - T,). As can be seen from these figures, the inter- 
face temperature increases from T, to T, as l/c or the 
downstream distance increases. 

6. CONCLUSIONS 

In this paper, we have introduced a new solution 
method for the analyses of the conjugate problems of 
conduction in solid and forced convection in fluid 
flow. This method is based on the nature of the con- 

Table 3. The regimes of [ in which a convection system 
should be solved as a conjugate problem 

Pr 
Flat Wedge Rotating 
plate (p = 0.5) Stagnation cone 

0.0001 (0.33,24) (0.12,24) (0.064,24) - 
0.001 (0.33,24) (0.12,24) (0.064,32) (0.053,24) 
0.01 (0.33,32) (0.12,32) (0.064,32) (0.053,24) 
0.1 (0.33,32) (0.14,32) (0.064,32) (0.064,24) 
21 (0.37,49) (0.15,32) (0.075,32) (0.075,32) 

jugate problem as a hybrid system of the ordinary 
convective problem with constant wall temperature 
and that with constant wall heat flux. All the variables 
are defined in such a way to reflect the characteristic 
of the conjugate problem. The analyses and results 
have shown that this method is physically strict, math- 
ematically simple and very accurate. With some modi- 
fications, the method can be applied to the conjugate 
problems of free convection on vertical and horizontal 
flat plates [lo]. 

The correlation equations presented for a flat plate 
and a wedge of fi = 0.5 are valid over the entire 
thermo-fluid-dynamic field for 0.0001 < Pr ,< co. 

These correlation equations and the exact solutions 
for the stagnation flow and a rotating cone are very 
useful and reliable for engineering applications. More- 
over, we have also presented the regimes of the con- 
jugation parameter in which a convective system 
should be solved as a conjugate problem. Beyond this 
regime, the system can be approximated, within 5% 
error, by the ordinary convective problem of constant 
wall temperature or constant wall heat flux. 
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TRANSFERT THERMIQUE COUPLE DE CONDUCTION ET DE CONVECTION FORCEE 
LE LONG DES ANGLES ET D’UN CONE TOURNANT 

R&&---On propose une methode de resolution tres efficace pour traiter les probltmes couples de 
convection for&e pour les Qoulements a couche limite et de conduction dans une paroi solide. Pour des 
Bcoulements sur une plaque plane et un angle, des solutions tres precises aux differences finies de temperature 
a l’interface et de flux thermique sont present&s pour un nombre de Prandtl entre O,OOOl et l’infini. Des 
equations donnant le nombre de Nusselt local sont present&es qui coincident parfaitement avec les don&es 
numiriques. Pour les problemes couples de l’ecoulement d’arret et un cone ou un disque tournant, on 

obtient des solutions exactes. 

KONJUGIERTE WARMEUBERTRAGUNG DURCH LEITUNG UND ERZWUNGENE 
KONVEKTION UM EINEN KEIL UND EINEN ROTIERENDEN KEGEL 

Zusammenfassung-Es wird ein sehr ehizientes Losungsverfahren zur Behandlung des konjugierten Prob- 
lems der erzwungenen Konvektion in einer laminaren Grenzschichtstrijmung und der Wlrmeleitung in 
einer festen Wand vorgeschlagen. Fur Stromungen entlang einer ebenen Platte und tiber einen Keil werden 
unter Verwendung eines Finite-Differenzen-Verfahrens sehr genaue Ergebnisse fur die GrenzlIlchen- 
temperatur und den Wlrmeiibergang vorgestellt, und zwar im gesamten thermo-fluiddynamischen Bereich 
bei beliebiger Prandtl-Zahl zwischen 0,OOOl und unendlich. Fiir die ijrtliche Nusselt-Zahl wird auDerdem 
eine Korrelationsgleichung angegeben, mit deren Hilfe die numerischen Daten hervorragend wiedergegeben 
werden kiinnen. Fur die konjugierten Probleme einer Staupunktstriimung und eines rotierenden Zylinders 

oder einer rotierenden Scheibe ergeben sich exakte Liisungen. 

COI-IPXXEHHbIH TEIIJIOIIEPEHOC IIPH 06TEKAHMM KJIHHbEB M BPAIIIAIOIIIEFOCFI 
KOHYCA 

.hIOTaUESI-l$eNIOKteti 3@@ETHBHbli% hmon pememin COIIpnZKeiiHOii 3aJlaqH TetIJIOO6MeHa B JIaMH- 

HapHOM lIOl-paHH=IHOM CJlOe H Te."JIOQ,‘,BOL,HOCTH B TBepflOfi CTeHKe. B CJIyWe 06TeK%iHn IlJlOCKOii 

IlJlaCTHHbl H KJlHHa Il~LWTaEUleHbl KOHe'lHO-pa3HOCTHble pemeHHn &WI TeMllepaTypbl H TeMOBOrO 

IlOTOKa Ha lJXiHHI&? pK3JWla IlpH 3HWEHHllX ‘IHCJla &JaH~TJUI, H3MeHRlOU&HXCII OT o,~l JlO 6ecKOHeF 

HOCTH. npHllOllSlTCn Tame o6o6maroume COOTHOmeHHIl LUIn JlOKaJIbHYX WC&l HyCWIbTa, KOTOpble 

0qeHb xopomo cornacyioTcn c micnemibIMsi pe3ynbTaTahm. llonyqeHbl pemeHHn conpnrteHHHx 3ana9 

Te'feHHn B6JIH3H KpHTH’fCCKOii TO’lKH, 23 TaKXe B~XUt%OlWXOCK KOHyCa HJIH .llHCKa. 


